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Ising anyons with a string tension
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We consider the string-net model on the honeycomb lattice for Ising anyons in the presence of a string tension.
This competing term induces a nontrivial dynamics of the non-Abelian anyonic quasiparticles and may lead to a
breakdown of the topological phase. Using high-order series expansions and exact diagonalizations, we determine
the robustness of this doubled Ising phase, which is found to be separated from two gapped phases. An effective
quantum dimer model emerges in the large tension limit, giving rise to two different translation symmetry-broken
phases. Consequently, we obtain four transition points, two of which are associated with first-order transitions
whereas the two others are found to be continuous and provide examples of recently proposed Bose condensation
for anyons.
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More than 20 years after its discovery [1–3], topological
quantum order remains one of the most fascinating fields
of condensed matter physics. Topologically ordered systems
are characterized by several features such as, e.g., the topo-
logical degeneracy, exotic braiding statistics, or long-range
entanglement (see Ref. [4] for a recent review). Contrary to
conventional phases, topological phases cannot be described
by a local order parameter so that the Landau-Ginzburg theory
cannot be used to investigate transitions between them. In
this context, new tools have been developed to understand
transition mechanisms. Among them, an appealing approach
relying on condensation of bosonic quasiparticles [5] has been
proposed to determine some possible connections between
different phases. We refer the interested readers to Refs. [6–10]
for concrete examples in lattice models and to Refs. [11–14]
for more mathematical considerations. However, a complete
description of topological phase transitions is still missing and,
in particular, a classification of universality classes for the
critical properties is still to be established. From that respect,
it seems essential to study microscopic models in order to
explore possible scenarios.

In this Rapid Communication, we analyze the zero-
temperature phase diagram of the string-net model [15] defined
on the honeycomb lattice with Ising anyons in the presence
of a string tension. First, we give some properties of the
unperturbed Ising string-net model and we discuss several
limiting cases, allowing for a qualitative understanding of
the phase diagram. To go beyond, we compute high-order
series expansions of the low-energy spectrum in two limiting
cases that we compare with exact diagonalization (ED) results.
Apart from a trivial (polarized) phase and the doubled Ising
(DIsing) topological phase, we find two different translation
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symmetry-broken phases emerging from an effective quantum
dimer model whose analysis is given in Ref. [16]. Furthermore,
our results also suggest the possibility of universality classes
associated with the condensation of Ising quasiparticles.

Hilbert space. Microscopic degrees of freedom of the
string-net model are defined on the edges of a trivalent graph
[15]. For the Ising theory considered thereafter, they can be
in three different states |1〉, |σ 〉, and |ψ〉. The Hilbert space
H is then defined by the set of states that satisfy the so-called
branching rules (at each vertex) stemming from the SU(2)2

fusion rules

1 × a = a × 1 = a, ∀a ∈ {1,σ,ψ}, (1)

σ × σ = 1 + ψ, σ × ψ = ψ × σ = σ, ψ × ψ = 1.

(2)

For any trivalent graph with Nv vertices, the dimension of the
Hilbert space is then given by [17]

dimH = 2Nv+1 + 2Nv/2. (3)

Model. Let us consider the following Hamiltonian,

H = −Jp

∑
p

δ�(p),1 − Je

∑
e

δl(e),1, (4)

first introduced in Refs. [17,18]. The first term is the string-net
Hamiltonian introduced by Levin and Wen [15]. It involves
the projector δ�(p),1 onto states with no flux �(p) through
plaquette p. The second term is diagonal in the canonical
basis introduced above since δl(e),1 is the projector onto state
|1〉 on edge e. This latter term is a string tension since it
breaks the topological properties of the ground state described
in Ref. [15]. Without loss of generality, we set Jp = cos θ and
Je = sin θ .

For θ = 0, the system is, by construction, in a doubled
(achiral) Ising topological phase, dubbed DIsing in the follow-
ing [9,19]. Consequently, the degeneracy of the eigenstates
depends on the graph topology. For instance, the degeneracy
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of the kth energy level (Ek = −Np + k) on a torus with Np

plaquettes is [20]

Dk =
(

Np

k

)
[1 + 6(−1)k + 2 × 3k], (5)

where the binomial coefficient results from the different ways
to choose k plaquettes carrying the flux excitations among Np.
In particular, one findsD0 = 9 ground states that are labeled by
the (trivalued) flux contained in each of the two noncontractible
loops of the torus [9]. Note that, using the Euler-Poincaré
relation for a trivalent graph on this genus-one surface (Nv =
2Np), it is easy to check that dimH = ∑Np

k=0 Dk matches with
Eq. (3).

One goal of the present work is to analyze the stability of
this topological phase when Je is switched on as well as to
characterize the transition between various phases. Indeed, for
θ = π/2, the (unique) ground state is the state where all edges
are in the state |1〉. Thus, there must be at least one phase
transition in the range [0,π/2]. For θ = 3π/2, the ground
state is infinitely many degenerate in the thermodynamical
limit so that (at least) one phase transition is expected in
the range [3π/2,2π ]. Finally, for θ = π , the ground-state
degeneracy (on a torus) is given by DNp so that transitions
must also occur in the range [π/2,3π/2]. In the following, we
consider the simplest two-dimensional trivalent graph, namely,
the honeycomb lattice.

The “simple” case: θ ∈ [0,π ]. To determine the boundaries
of the DIsing topological phase (around θ = 0), we computed
the ground-state energy as well as the quasiparticle gaps
by means of high-order series expansions in powers of
Je/Jp (lengthy expressions are given in Ref. [16]) using
various techniques [21–23]. In the vicinity of θ = 0, one
must make the distinction between two different low-energy
gaps corresponding to quasi-σ and quasi-ψ excitations. These
excitations are usually referred to as σLσR and ψLψR in the
literature (see, for instance, Ref. [9]) but, for simplicity, we will
adopt here a quasiparticle language, keeping in mind that these
are achiral objects. Contrary to quasi-ψ excitations, a single
quasi-σ excitation cannot exist on a compact surface such as
the torus because of the branching rules [20]. Using standard
extrapolation methods, we determined the points where these
gaps vanish and thus established the stability range of the
DIsing phase. However, if level crossings due to higher-energy
levels are present, a first-order transition may also arise and
cannot be captured by our perturbative approach that only
deals with low-energy states. To check the validity of the
conclusions drawn from the series expansions, we performed
ED of H using periodic boundary conditions and systems with
unit vectors of equal norms forming an angle of π/3. On the
torus, the Hamiltonian H can be split into topological different
sectors that must not be confused with the nine flux sectors
discussed previously for θ = 0. Indeed, for any θ , branching
rules impose that a |σ 〉 link is always connected to a single
|σ 〉 link. In particular, there exist noncontractible loops of |σ 〉
links enclosing the torus. Fusion rules impose that H only
conserves the parity of the number of such loops and, since
there are two independent noncontractible loops on the torus,
one has 2 × 2 different sectors for any θ .

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

-1.25

-1.2

-1.15

-1.1

0.15 0.2 0.25 θc
1 0.3

e0

θ

FIG. 1. (Color online) From top to bottom, ground-state energy
per plaquette e0 computed from series expansions at order 1–11
around θ = 0 (yellow) and at order 1–18 around θ = π/2 (blue).
For comparison, ED results (red) are also displayed for Np = 7,9,13
(from bottom to top).

We display in Fig. 1 a comparison between the ED
results and the series expansions for the ground-state energy
performed around θ = 0 (red) and θ = π/2 (blue). As can be
seen, at each order, the series intersect at two different points.
Similarly, we show in Fig. 2 the results for the low-energy
gap that intersect in a unique point. After extrapolations, using
the same analysis as in Ref. [24], we found that all these
crossing points converge towards a unique value defining a
second-order transition point at θ c

1 � 0.261. This point also
matches with the position of the infinite-size extrapolation of
the gap minimum as well as the minimum of ∂2

θ e0 computed
from ED. This critical point separates the DIsing phase
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FIG. 2. (Color online) From top to bottom, low-energy gap 	

computed from series expansions at order 1–10 around θ = 0 (yellow)
and at order 1–8 around θ = π/2 (blue). For comparison, the first nine
excitation energies obtained from ED (red) are shown for Np = 13.
The first excited level is eightfold degenerate. Inset: Minimum of
ninth excitation energy as a function of N−1

p computed from ED
(squares); minimum of 	 as a function of n−1 (circles) computed at
the crossing point between order n series performed around θ = 0 and
θ = π/2. Lines are power law fits consistent with limn,Np→0	 = 0.
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originating from θ = 0 from the polarized (nontopological)
phase near θ = π/2.

We stress that the relevant low-energy gap in the ED
must be interpreted as a single quasiparticle gap associated
to quasi-ψ excitations. The corresponding energy level is
indeed adiabatically connected to E1 = E0 + 1 at θ = 0.
Within the topological symmetry-breaking formalism pro-
posed in Ref. [5], if quasi-ψ excitations condense while
quasi-σ excitations remain gapped, one should switch towards
another topological phase, which is not the case here. In this
framework, the only possibility to enter a nontopological phase
is that the quasi-σ gap also vanishes at θ c

1 . As explained above,
this gap cannot be observed in ED on a torus but it can be
computed perturbatively since this approach is independent
of the surface topology in the thermodynamical limit. Series
expansions of both quasiparticle gaps (quasi-ψ and quasi-σ )
are given in Ref. [16]. As can be checked explicitly, they are
strictly identical up to order 4 and differ beyond. However, the
sign of the (tiny) difference between both gaps changes at each
order, which is compatible with a simultaneous vanishing of
these gaps at θ c

1 . Note that we performed similar calculations
for the ladder geometry and we found that both gaps are
identical at all orders we computed [25]. For θ ∈ [π/2,π [,
we did not find any indication of a transition but, as for the
Fibonacci theory [24], the first derivative of the ground-state
energy per plaquette ∂θe0 displays a jump at θ = π , indicating
a first-order transition. Thus, the trivial phase originating from
θ = π/2 extends from θ c

1 (second-order transition point) to π

(first-order transition point).
The “original” case: θ ∈ [3π/2,2π ]. For θ = 3π/2, the

ground-state manifold is spanned by all states minimizing the
number of edges in state |1〉. Interestingly, for the Ising theory,
fusion (branching) rules allow some states without any |1〉
bond provided each vertex touches exactly one |ψ〉 and two
|σ 〉. These constraints are nothing but those of hard-core dimer
coverings of the hexagonal lattice if the state |ψ〉 is viewed as
a bond occupied by a “dimer.”

The exponential ground-state degeneracy at θ = 3π/2
prevents a simple series expansion around this point. In
addition, the alternating signs in the series around θ = 0−
prevents from an analysis similar to the one used in the
range [0,π/2]. However, a close inspection of the gap series
expansion around θ = 0 indicates a transition point near
θ c

2 � 5.57. As can be seen in Fig. 3, ED results are consistent
with a unique phase transition in the range [3π/2,2π ],
but accessible sizes are definitely too small to characterize
properly the phase for θ ∈ [3π/2,θ c

2 [ as well as the nature of
the transition. To gain a deeper understanding of this region,
we derived the low-energy effective theory near θ = 3π/2,
at leading order, by considering the effect of the string-net
Hamiltonian on the infinitely many degenerate ground-state
manifold of the unperturbed (Jp = 0) problem. The effective
Hamiltonian can be written in the following form:

Heff = −Jp

4

∑
p

[t(| 〉〈 | + | 〉〈 |)

+ v| 〉〈 | − 1] (6)

with t = 1/2 and v = 1. In this representation, a red (blue) link
corresponds to a |σ 〉 (|ψ〉) state. We emphasize that Heff is only
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FIG. 3. (Color online) Low-energy gap 	 computed from re-
summed series expansions around θ = 0 [dlog Padé approximants
[m,n] for m,n � 3 are displayed (yellow)] and from the expres-
sion (8), which is a good approximation of the gap around θ = 3π/2+

(green). The first nine excitation energies obtained from ED (red) are
shown for Np = 12.

valid to compute the correction of order 1 (∝Jp) to the spectrum
of H near θ = 3π/2. This effective Hamiltonian consists of
two terms: a kinetic term t acting on “flippable” plaquettes
and a potential term v proportional to the number of empty
plaquettes (without dimers). This model looks very similar
to the famous quantum dimer model introduced by Rokhsar
and Kivelson on the square lattice [26] and later studied on
the honeycomb lattice [27]. The only difference between both
models comes from the potential term that, in the Rokhsar-
Kivelson model, is proportional to the number of flippable
plaquettes. To our knowledge, the Hamiltonian (6) has yet to
be studied and cannot be solved exactly for arbitrary couplings.
However, for Jp > 0, it is possible to infer its low-energy
properties by considering the limit t/v 
 1 while keeping in
mind that t/v = 1/2 in our problem. For t = 0 (and Jp > 0),
the energy is minimized by maximizing the number of empty
plaquettes (without dimers). In the thermodynamical limit,
there are three possible ground states satisfying this constraint
so that the system is in the so-called

√
3 × √

3 star crystal
(SC) phase [28] (see Ref. [16] for an illustration). First excited
states are obtained by flipping one plaquette in one of these
ground states.

The kinetic term t induces quantum fluctuations that can
be captured using perturbation theory. At order 2 in t/v, the
ground-state energy per plaquette is given by

e0 = Jp

4

(
−1 − v

3
− 2

9

t2

v

)
, (7)

whereas the low-energy gap reads

	 = Jp

4

(
3v − 4

3

t2

v

)
. (8)

Of course, one could reach higher orders in this t/v expansions
but it is not of crucial importance for the present study. Indeed,
these expressions already provide a very good approximation
of e0 and 	 for t/v = 1/2 since, as shown in Ref. [16],
they only differ from the infinite-size values extrapolated

201103-3



RAPID COMMUNICATIONS

SCHULZ, DUSUEL, MISGUICH, SCHMIDT, AND VIDAL PHYSICAL REVIEW B 89, 201103(R) (2014)

?

Polarized θc
1
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FIG. 4. (Color online) Sketch of the phase diagram. Four differ-
ent gapped phases are identified among which one is topologically
ordered (DIsing) and two break the translation symmetry (SC and
PC). Diamonds (circles) indicate first-order (second-order) transition
points (see text for more details).

from ED results by less than 0.3% and 1.5%, respectively.
In the range [3π/2,θ c

2 [, we thus find a gapped translation
symmetry-broken phase with a threefold degenerate ground
state. Furthermore, the three momenta (center and the two
corners of the hexagonal Brillouin zone) of the ground states
in the SC coincide with the locations of the minima of
the excitation gap in the DIsing phase. This suggests that
the transition from the topological phase to the crystal also
corresponds to a simultaneous condensation of the anyonic
quasiparticles.

Furthermore, momenta of these SCs also minimize the
dispersion in the range θ ∈ [0,θ c

2 [ which is compatible with
a second-order transition. This is an example of a continuous
phase transition between a non-Abelian topological phase and
a nontopological (translation) symmetry-broken phase.

The “tricky” case: θ ∈ [π,3π/2]. Obviously, the effective
model (6) is also valid for θ = 3π/2− but, contrary to the
case Jp > 0 where a SC is favored (see discussion above),

the ground state is infinitely many degenerate at t = 0 so
that it is difficult to consider a perturbative t/v expansion.
Consequently, we performed ED of Heff up to relatively large
system sizes (Np = 63) and we found that the point t = 1/2,
v = 1 lies in the same phase as the point t = 1/2, v = 0 (see
Ref. [16]). As discussed in Ref. [27] for v = 0, the ground
state displays the so-called plaquette order that breaks the
translational symmetry. Thus, for θ = 3π/2−, we expect a
nontopological ordered (gapped) plaquette crystal (PC) phase
with a threefold degenerate ground state. However, in the
absence of perturbative analysis near θ = π and because of
important variations with the system size of the ED results
(at least up to Np = 13 which is our current limit), we did
not succeed in characterizing the whole interval [π,3π/2].
However, we observe that ∂θe0 displays a jump for θ = π and
θ = 3π/2 so that first-order transitions occur at these points.

Summary and outlook. A sketch of the phase diagram
gathering all information discussed throughout this Rapid
Communication is given in Fig. 4. One of the main results
is the possibility to condense simultaneously quasi-ψ and
quasi-σ excitations at the critical point θ c

1 , unveiling a likely
new universality class. Unfortunately, in the absence of an
alternative description, it is difficult to predict the associated
critical exponents. Setting θ c

1 = 0.261, a standard ED data
collapse analysis gives results that obey the hyperscaling
relation for z = 1 and ν � 0.39, and the resulting specific-
heat exponent is α = 2 − ν(2 + z) � 0.83. One can also
compute directly the exponent zν using different dlog Padé
approximants of the gap series and we found values in the
range [0.35,0.5]. This rather broad range clearly indicates the
lack of precision of such an approach for order 10 series,
but suggests that this phase transition may belong to a new
universality class. We hope that the present work will stimulate
further studies to deepen our understanding of the topological
phase transitions.
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